Noncommutative surfaces, clusters and their symmetries

黄敏

数学学院(珠海)

joint with Arkady Berenstein and Vladimir Retakh

中山大学

代数表示论青年论坛

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

10-23, 2024 1 / 33

- In Non-commutative cluster algebras-an informal introduction
- On-commutative polygon
- Son-commutative surfaces and their cluster structures
- Braid group action and their symmetries

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group $Br_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $Br_{\mathcal{A}}$ on G for any ι such that:

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group $Br_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $Br_{\mathcal{A}}$ on G for any ι such that:

The extensions *ι* : KG → A are injective and their images generate A (and A is a isomorphic to a noncommutative localization of KG).

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group $Br_{\mathcal{A}}$ together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid \mathcal{A}^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_{ι} of $Br_{\mathcal{A}}$ on G for any ι such that:

- The extensions *ι* : KG → A are injective and their images generate A (and A is a isomorphic to a noncommutative localization of KG).
- (monomial mutation) For any ι and ι' we expect a (unique) automorphism μ_{ι,ι'} of G which intertwines between ι and ι' as well as between Br_A-actions ▷_ι and ▷_{ι'}.

< □ > < □ > < □ > < □ > < □ > < □ >

For any cluster homomorphism f : A → A' we expect a unique (up to conjugation) group homomorphism f_{*} : G → G' so that the induced homomorphism Br^f_A := {T ∈ Br_A : T(Ker f_{*}) = Ker f_{*}} → Br_{A'} is injective.

In many cases we expect a (noncommutative) Laurent Phenomenon:

• Given a cluster $\iota: G \hookrightarrow \mathcal{A}^{\times}$, for any cluster $\iota': G \hookrightarrow \mathcal{A}^{\times}$ there is a submonoid $M_{\iota'} \subset G$ generating G such that $\iota'(M_{\iota'})$ is in the semiring $\mathbb{Z}_{\geq 0}\iota(G)$, moreover,

$$\iota'(m) = \iota(\mu_{\iota,\iota'}(m)) + {\sf lower (upper)} \; \; {\sf terms in} \; \iota(G)$$

for any $m \in M_{\iota'}$.

Example: Ordinary and quantum cluster structures

The localization \mathcal{A} of a (quantum) cluster algebra $\underline{\mathcal{A}}$, determined by an $m \times n$ exchange matrix \tilde{B} (and compatible $m \times m$ skew-symmetric matrix Λ), by the set X of all of its cluster variables satisfies all of the above requirements with $G \cong \mathbb{Z}^m$ (or its central extension G_a in quantum case) so that $\mathbb{Q}G = \mathbb{Q}[x_1^{\pm 1}, \dots, x_m^{\pm 1}]$ for a given cluster $\{x_1, \dots, x_n\}$ in \mathcal{A} . The well-known commutative/quantum Laurent Phenomenon asserts that the set of all (quantum) cluster variables belongs to the group algebra $\mathbb{Q}G$ which is an instance of its noncommutative counterpart stated above. In these cases, $Br_{\mathcal{A}}$ is essentially the group of symplectic transvections introduced by B. Shapiro, M. Shapiro, A. Vainshtein, A. Zelevinsky in 2000) and it is always a quotient of an appropriate Artin braid group.

・ロット (日) ・ (日) ・ (日)

Non-commutative polygon

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

→ < Ξ →</p>

Non-commutative *n*-gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

Non-commutative n-gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

 $[n] := \{1, 2, \cdots, n\};$

Non-commutative n-gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

 $[n] := \{1, 2, \cdots, n\};$

Definition [Berenstein-Retakh]

The non-commutative n-gon $\mathcal{A}(\Sigma_n)$ is defined to be the non-commutative algebra generated by $x_{ij}, i \neq j \in [n]$, subject to

- (triangle relation) $x_{ij}x_{kj}^{-1}x_{ki} = x_{ik}x_{jk}^{-1}x_{ji}$ for any triangle (i, j, k);
- (Ptolemy relation) $x_{jl} = x_{ji}x_{ki}^{-1}x_{kl} + x_{jk}x_{ik}^{-1}x_{il}$ for any quadrilateral (i, j, k, l) on Σ_n .

くぼう くほう くほう しほ

For any triangle (i, j, k), define $T_i^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}$. Call it the *angle* at *i*. For any triangle (i, j, k), define $T_i^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}$. Call it the *angle* at *i*.

(Triangle relations) $T_i^{jk} = T_i^{kj}$ for distinct i, j, k.

A (10) < A (10) < A (10) </p>

For any triangle (i, j, k), define $T_i^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}$. Call it the *angle* at *i*.

(Triangle relations) $T_i^{jk} = T_i^{kj}$ for distinct i, j, k.

(Ptolemy relation) Angle is additive

$$x_{ji}^{-1}x_{jl}x_{il}^{-1} = x_{ki}^{-1}x_{kl}x_{il}^{-1} + x_{ji}^{-1}x_{jk}x_{ik}^{-1}, \quad T_i^{jl} = T_i^{jk} + T_i^{kl}x_{ik}^{-1}$$

For any triangulation Δ of Σ_n , the total angle $T_i(\Delta)$ is defined to be

$$\sum_{(i,j,k)} T_i^{jk},$$

where (i, j, k) runs over all triangles incident to i in Δ .

For any triangulation Δ of Σ_n , the total angle $T_i(\Delta)$ is defined to be

 $\sum_{(i,j,k)} T_i^{jk},$

where (i, j, k) runs over all triangles incident to i in Δ .

Proposition.

For any $i \in [n]$, the total angle $T_i(\Delta)$ does not depend on the triangulation, i.e., $T_i(\Delta) = x_{i^{-1}}^{-1} x_{i^{-i^+}} x_{i^+i}^{-1} = T_i^{i^-,i^+}$.

Theorem [Berenstein-Retakh]

For any triangulation Δ of the n-gon and for any distinct $i,j\in[1,n],$ we have

$$x_{ij} = \sum_{\mathbf{i} = (i_1, \dots, i_{2m})} x_{\mathbf{i}},$$

where the summation is over all (ij)-admissible sequences i in Δ , i.e.,

10-23, 2024 10 / 33

Theorem [Berenstein-Retakh]

For any triangulation Δ of the n-gon and for any distinct $i,j\in[1,n],$ we have

$$x_{ij} = \sum_{\mathbf{i} = (i_1, \dots, i_{2m})} x_{\mathbf{i}},$$

where the summation is over all (ij)-admissible sequences i in Δ , i.e.,

•
$$i_1 = i$$
, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m - 1$;

< 47 ▶

- 4 ⊒ →

Theorem [Berenstein-Retakh]

For any triangulation Δ of the n-gon and for any distinct $i,j\in[1,n],$ we have

$$x_{ij} = \sum_{\mathbf{i} = (i_1, \dots, i_{2m})} x_{\mathbf{i}},$$

where the summation is over all (ij)-admissible sequences i in Δ , i.e.,

•
$$i_1 = i$$
, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m - 1$;

• an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;

< 47 ▶

→ Ξ →

Theorem [Berenstein-Retakh]

For any triangulation Δ of the n-gon and for any distinct $i,j\in[1,n],$ we have

$$x_{ij} = \sum_{\mathbf{i} = (i_1, \dots, i_{2m})} x_{\mathbf{i}},$$

where the summation is over all (ij)-admissible sequences i in Δ , i.e.,

- $i_1 = i, i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for s = 1, ..., 2m 1;
- an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;
- If $\mathbf{p} := (i_k, i_{k+1}) \cap (i, j) \neq \emptyset$ and $\mathbf{q} := (i_\ell, i_{\ell+1}) \cap (ij) \neq \emptyset$ for some $k < \ell$, then the point \mathbf{p} of (ij) is closer to i than \mathbf{q} .

(日)

Theorem [Berenstein-Retakh]

For any triangulation Δ of the n-gon and for any distinct $i,j\in[1,n],$ we have

$$x_{ij} = \sum_{\mathbf{i} = (i_1, \dots, i_{2m})} x_{\mathbf{i}},$$

where the summation is over all (ij)-admissible sequences i in Δ , i.e.,

- $i_1 = i$, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, \dots, 2m 1$;
- an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;
- If $\mathbf{p} := (i_k, i_{k+1}) \cap (i, j) \neq \emptyset$ and $\mathbf{q} := (i_\ell, i_{\ell+1}) \cap (ij) \neq \emptyset$ for some $k < \ell$, then the point \mathbf{p} of (ij) is closer to i than \mathbf{q} .

and
$$x_{\mathbf{i}} := x_{i_1,i_2} x_{i_3,i_2}^{-1} x_{i_3,i_4} \cdots x_{i_{2m-1},i_{2m-2}}^{-1} x_{i_{2m-1},i_{2m}}$$

(日)

Example

If
$$n=5$$
 and $\Delta=\{(1,3),(3,1),(1,4),(4,1);(i,i\pm1)|i\in[5]\},$ then

$$x_{21}^{-1}x_{25}x_{15}^{-1} = x_{21}^{-1}x_{23}x_{13}^{-1} + x_{31}^{-1}x_{34}x_{14}^{-1} + x_{41}^{-1}x_{45}x_{15}^{-1}.$$

 $x_{25} = x_{23}x_{13}^{-1}x_{15} + x_{21}x_{31}^{-1}x_{34}x_{14}^{-1}x_{15} + x_{21}x_{41}^{-1}x_{45}.$

黄敏 (中山大学)

Noncommutative surfaces, clusters, and thei

10-23, 2024 11 / 33

For any triangulation Δ of Σ_n , the *triangle group* \mathbb{T}_Δ is defined to be $\mathbb{T}_\Delta = \langle t_{ij}, (ij) \in \Delta \rangle$ subject to

$$t_{ij}t_{kj}^{-1}t_{ki} = t_{ik}t_{jk}^{-1}t_{ji}$$

for $i, j, k \in [n]$.

Proposition

For any two triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}$.

For any triangulation Δ of Σ_n , the *triangle group* \mathbb{T}_Δ is defined to be $\mathbb{T}_\Delta = \langle t_{ij}, (ij) \in \Delta \rangle$ subject to

$$t_{ij}t_{kj}^{-1}t_{ki} = t_{ik}t_{jk}^{-1}t_{ji}$$

for $i, j, k \in [n]$.

Proposition

For any two triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}$.

We denote $\mathbb{T}_{\Sigma_n} = \mathbb{T}_{\Delta}$ and call it *triangle group* of Σ_n .

くぼう くほう くほう しほ

Fix a triangulation Δ of Σ_n , define $T_{ik} \in Aut(\mathbb{T}_\Delta)$

$$T_{ik}(t_{\gamma}) = \begin{cases} t_{ij}t_{kj}^{-1}t_{kl}t_{il}^{-1}t_{\gamma} & \text{if } \gamma = (ik) \\ t_{\gamma}t_{li}^{-1}t_{lk}t_{jk}^{-1}t_{ji} & \text{if } \gamma = (ki) \\ t_{\gamma} & \text{otherwise} \end{cases}$$

for any internal edge (ik) of Δ where (ijkl) is a cyclic quadrilateral containing (ik) as a diagonal.

Triangle group and braid group action Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

黄敏 (中山大学)

< □ > < □ > < □ > < □ > < □ > < □ >

Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

Theorem

For any two triangulations Δ, Δ' of Σ_n , $Br_\Delta \cong Br_{\Delta'} \cong Br_{n-2}$.

< □ > < □ > < □ > < □ > < □ > < □ >

Triangle group and braid group action Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

Theorem

For any two triangulations Δ, Δ' of Σ_n , $Br_\Delta \cong Br_{\Delta'} \cong Br_{n-2}$.

If Δ is a triangulation of the hexagon as in the picture

then $Br_{\mathcal{A}_6} = Br_4$ is generated by T_{13} , T_{15} , and T_{35} subject to $T_{13}T_{35}T_{13} = T_{35}T_{13}T_{35}$, $T_{35}T_{15}T_{35} = T_{15}T_{35}T_{15}$, $T_{35}T_{15}T_{35} = T_{15}T_{35}T_{15}$ and $T_{13}T_{15}T_{35}T_{13} = T_{15}T_{35}T_{13}T_{15} = T_{35}T_{13}T_{15}T_{35}$.

Non-commutative marked surfaces and their cluster structure

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

10-23, 2024 15 / 33

 $\boldsymbol{\Sigma} = (S, M, U)$ marked orbifold, i.e.,

 ${\cal S}$ Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

 $\boldsymbol{\Sigma} = (S, M, U)$ marked orbifold, i.e.,

 ${\cal S}$ Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U)$): oriented, connects two marked points,

 $\boldsymbol{\Sigma} = (S, M, U)$ marked orbifold, i.e.,

 ${\cal S}$ Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U))$: oriented, connects two marked points,

 $\bar{\gamma}$ reverse the orientation of γ

$$\Sigma = (S, M, U)$$
 marked orbifold, i.e.,

 ${\cal S}$ Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U)$): oriented, connects two marked points,

 $\bar{\gamma}$ reverse the orientation of γ

```
\Gamma(\Sigma): set of curves in \Sigma
```

Definition [Berenstein-H-Retakh]

The non-commutative orbifold $\mathcal{A}(\Sigma)$ is defined to be the non-commutative algebra generated by $x_{\gamma}, \gamma \in \Gamma(\Sigma)$, subject to (1) (triangle relation) $x_{\gamma_1} x_{\overline{\gamma}_2}^{-1} x_{\gamma_3} = x_{\overline{\gamma}_3} x_{\gamma_2}^{-1} x_{\overline{\gamma}_1}$ for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Σ ; (2) (Ptolemy relation) $x_{jl} = x_{ji} x_{ki}^{-1} x_{kl} + x_{jk} x_{ik}^{-1} x_{il}$ for any quadrilateral (i, j, k, l) in Σ ;

(3) (Monogon relations) $x_{\overline{\gamma}} = x_{\gamma}$ for each loop γ cuts out a monogon which contains only an orbifold point.

くぼう くほう くほう しほ

Non-commutative orbifolds

Definition-continuous

(4) (Bigon orbifold relations)

$$\begin{split} x_{\alpha'} &= x_{\bar{\alpha}_1} x_{\alpha}^{-1} x_{\alpha_1} + 2\cos(\frac{\pi}{|p|}) x_{\bar{\alpha}_1} x_{\alpha}^{-1} x_{\bar{\alpha}_2} + x_{\alpha_2} x_{\alpha}^{-1} x_{\bar{\alpha}_2} \text{ for any bigon} \\ (\alpha_1, \alpha_2) \text{ around an orbifold point } p, \text{ where } \alpha \text{ is the loop around } p \text{ such that} \\ (\alpha_1, \alpha_2, \alpha) \text{ is a triangle and } \alpha' \text{ is the loop around } p \text{ such that} \\ (\alpha', \alpha_2, \alpha_1) \text{ is a triangle.} \end{split}$$

Non-commutative orbifolds

Definition-continuous

(4) (Bigon orbifold relations)

$$\begin{split} x_{\alpha'} &= x_{\bar{\alpha}_1} x_{\alpha}^{-1} x_{\alpha_1} + 2\cos(\frac{\pi}{|p|}) x_{\bar{\alpha}_1} x_{\alpha}^{-1} x_{\bar{\alpha}_2} + x_{\alpha_2} x_{\alpha}^{-1} x_{\bar{\alpha}_2} \text{ for any bigon} \\ (\alpha_1, \alpha_2) \text{ around an orbifold point } p, \text{ where } \alpha \text{ is the loop around } p \text{ such that} \\ (\alpha_1, \alpha_2, \alpha) \text{ is a triangle and } \alpha' \text{ is the loop around } p \text{ such that} \\ (\alpha', \alpha_2, \alpha_1) \text{ is a triangle.} \end{split}$$

$$\bar{}: \mathcal{A}_{\Sigma} \to \mathcal{A}_{\Sigma}, x_{\gamma} \mapsto x_{\bar{\gamma}}$$
 is an involution.

Remark

This is a non-commutative version of (generalized) cluster algebras from orbifolds.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Total angle

Let Δ be a triangulation of Σ .

• For any Δ and any cyclic triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ denote

$$T_{\gamma_1,\gamma_2,\gamma_3} := x_{\gamma_3}^{-1} x_{\overline{\gamma}_2} x_{\gamma_1}^{-1} = x_{\overline{\gamma}_1}^{-1} x_{\gamma_2} x_{\overline{\gamma}_3}^{-1}.$$

• For any $i \in M$, denote

$$T_{i}(\Delta) = \sum T_{(\gamma_{1},\gamma_{2},\gamma_{3})} + \sum 2\cos(\frac{\pi}{|p|})x_{\ell_{p}}^{-1},$$

where the first summation is over all clockwise triangles $(\gamma_1, \gamma_2, \gamma_3)$ in Δ such that $s(\gamma_1) = i$ and $T_{(\gamma_1, \gamma_2, \gamma_3)} = x_{\overline{\gamma}_1}^{-1} x_{\gamma_2} x_{\overline{\gamma}_3}^{-1}$, the second summation is over all clockwise loops ℓ_p enclose an orbifold point p with $s(\ell_p) = i$.

Total angle

Proposition

Let Δ, Δ' be two triangulations of Σ . We have

$$T_i(\Delta) = T_i(\Delta').$$

We refer it as the *total angle at* i.

An equivalent presentation of \mathcal{A}_{Σ} :

- Angle at a vertex of any triangle is well-defined.
- Angles at any marked point are additive.

Noncommutative surfaces - Tagged cluster variables

i puncture, γ is a curve with $t(\gamma)=i,$ define $x_{\gamma^{(i)}}=x_{\gamma}T_i.$

黄敏 (中山大学)

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Noncommutative surfaces - Tagged cluster variables

- i puncture, γ is a curve with $t(\gamma) = i$, define $x_{\gamma^{(i)}} = x_{\gamma}T_i$.
- i,j punctures, γ is a curve with $s(\gamma)=i,t(\gamma)=j,$ define

 $x_{\gamma^{(i,j)}} = T_i x_{\gamma} T_j.$

Call them tagged (non-commutative) cluster variables.

Noncommutative surfaces - Tagged cluster variables

- i puncture, γ is a curve with $t(\gamma)=i,$ define $x_{\gamma^{(i)}}=x_{\gamma}T_i.$
- i,j punctures, γ is a curve with $s(\gamma)=i,t(\gamma)=j,$ define

 $x_{\gamma^{(i,j)}} = T_i x_\gamma T_j.$

Call them tagged (non-commutative) cluster variables.

Theorem

For any puncture *i* the assignments $x_{\gamma} \mapsto T_i^{\delta_{i,s(\gamma)}} x_{\gamma} T_i^{\delta_{i,t(\gamma)}}$ define an involutive automorphism φ_i of \mathcal{A}_{Σ} , where $s(\gamma)$ and $t(\gamma)$ are respectively the starting and terminating point of γ .

Moreover, these automorphisms commute so that for any subset P of punctures the composition φ_P of all φ_i , $i \in P$ is well-defined.

 $\Delta: \text{ ideal triangulation of } \Sigma \text{, the } triangle \ group \ \mathbb{T}_\Delta = \langle t_\gamma, \gamma \in \Delta \rangle$ subject to

$$t_{\gamma_1} t_{\bar{\gamma}_2}^{-1} t_{\gamma_3} = t_{\bar{\gamma}_3} t_{\gamma_2}^{-1} t_{\bar{\gamma}_1}$$

for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ .

 $\Delta: \text{ ideal triangulation of } \Sigma \text{, the } triangle \ group \ \mathbb{T}_\Delta = \langle t_\gamma, \gamma \in \Delta \rangle$ subject to

$$t_{\gamma_1} t_{\bar{\gamma}_2}^{-1} t_{\gamma_3} = t_{\bar{\gamma}_3} t_{\gamma_2}^{-1} t_{\bar{\gamma}_1}$$

for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ .

 Δ tagged triangulation of Σ , the *triangle group* $\mathbb{T}_{\Delta} = \langle t_{\gamma}, \gamma \in \Delta \rangle$ subject to

•
$$t_{\gamma_1}t_{\bar{\gamma}_2}^{-1}t_{\gamma_3} = t_{\bar{\gamma}_3}t_{\gamma_2}^{-1}t_{\bar{\gamma}_1}$$
 for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ .

• $t_{10}t_{01^{tag}} = t_{10^{tag}}t_{01};$

• $t_{21}^+(t_{10}t_{01^{tag}})^{-1}t_{12}^- = t_{21}^-(t_{10}^{tag}t_{01})^{-1}t_{12}^+$ for any once-punctured digon.

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Triangle groups

Proposition

For any two tagged triangulations Δ, Δ' of $\Sigma_n, \mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}$.

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

10-23, 2024 23 / 33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Triangle groups

Proposition

For any two tagged triangulations Δ, Δ' of Σ_n , $\mathbb{T}_{\Delta} \cong \mathbb{T}_{\Delta'}$.

We denote $\mathbb{T}_{\Sigma} = \mathbb{T}_{\Delta}$ and call it *triangle group* of Σ .

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

10-23, 2024 23 / 33

.

Noncommutative Laurent Phenomenon

 $\begin{array}{l} \Delta \colon \text{tagged triangulation of } \Sigma \text{, define a natural embedding} \\ \iota_\Delta : \mathbb{T}_\Delta \to \mathcal{A}_\Sigma^\times, t_\gamma \mapsto x_\gamma \text{,} \end{array}$

Noncommutative Laurent Phenomenon

 $\begin{array}{l} \Delta: \text{ tagged triangulation of } \Sigma \text{, define a natural embedding} \\ \iota_\Delta: \mathbb{T}_\Delta \to \mathcal{A}_\Sigma^\times, t_\gamma \mapsto x_\gamma, \end{array}$

Theorem (Noncommutative Laurent Phenomenon)

The extension $\iota_{\Delta} : \mathbb{QT}_{\Delta} \to \mathcal{A}_{\Sigma}$ is injective for any tagged triangulation Δ of Σ and all x_{γ} (γ is a tagged curve) belong to its image. More precisely, each x_{γ} can be uniquely expressed as a positive sum of elements of $\iota_{\Delta}(\mathbb{T}_{\Delta})$.

Noncommutative Laurent Phenomenon

 $\begin{array}{l} \Delta: \text{ tagged triangulation of } \Sigma \text{, define a natural embedding} \\ \iota_\Delta: \mathbb{T}_\Delta \to \mathcal{A}_\Sigma^\times, t_\gamma \mapsto x_\gamma, \end{array}$

Theorem (Noncommutative Laurent Phenomenon)

The extension $\iota_{\Delta} : \mathbb{QT}_{\Delta} \to \mathcal{A}_{\Sigma}$ is injective for any tagged triangulation Δ of Σ and all x_{γ} (γ is a tagged curve) belong to its image. More precisely, each x_{γ} can be uniquely expressed as a positive sum of elements of $\iota_{\Delta}(\mathbb{T}_{\Delta})$.

In fact, the total angles T_i are in the image of all ι_{Δ} .

Fix an ideal triangulation Δ of Σ , if γ is not a self-folded arc, define $T_{\gamma} \in Aut(\mathbb{T}_{\Delta})$

$$T_{\gamma}(t_{\alpha}) = \begin{cases} t_{ij}t_{kj}^{-1}t_{kl}t_{il}^{-1}t_{\gamma} & \text{if } \gamma = (ik) \\ t_{\gamma}t_{li}^{-1}t_{lk}t_{jk}^{-1}t_{ji} & \text{if } \gamma = (ki) \\ t_{\gamma} & \text{otherwise} \end{cases}$$

for any internal edge (ik) of Δ where (ijkl) is a cyclic quadrilateral containing (ik) as a diagonal.

If $\gamma = (0,1)$ is self-folded arc, define $T_{\gamma} \in Aut(\mathbb{T}_{\Delta})$

$$T_{\gamma}(t_{\alpha}) = \begin{cases} t_{12}^{+}(t_{12}^{-})^{-1}t_{10} & \text{if } \gamma = (10) \\ \bar{T}_{\gamma}(10) & \text{if } \gamma = (01) \\ t_{12}^{+}(t_{12}^{-})^{-1}t_{11} & \text{if } \gamma = (11) \\ t_{\gamma} & \text{otherwise} \end{cases}$$

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

10-23, 2024 26 / 33

Denote $Br_{\Delta} = \langle T_{\gamma}, \gamma \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

10-23, 2024 27 / 33

イロト イポト イヨト イヨト 二日

Denote
$$Br_{\Delta} = \langle T_{\gamma}, \gamma \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$$

Theorem

For any two triangulations Δ, Δ' of Σ , $Br_{\Delta} \cong Br_{\Delta'}$, moreover,

- (a) if α and β are not two sides of any triangle in Δ , then $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$;
- (b) If α and β are two sides of exactly one triangle in Δ , then $T_{\alpha}T_{\beta}T_{\alpha} = T_{\beta}T_{\alpha}T_{\beta};$
- (c) If (α_1, α_2) forms a once-punctured bigon with diagonals α_3 and α_4 , assume that $(\alpha_1, \alpha_3, \alpha_4)$ is a clockwise triangle in Δ and α_1, α_2 are not two sides of any triangle in Δ , then $T_{\alpha_1}T_{\alpha_4}T_{\alpha_2}T_{\alpha_3}T_{\alpha_1}T_{\alpha_4} = T_{\alpha_4}T_{\alpha_2}T_{\alpha_3}T_{\alpha_1}T_{\alpha_4}T_{\alpha_2};$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Continue

Theorem

For any two triangulations Δ , Δ' of Σ , $Br_{\Delta} \cong Br_{\Delta'}$, moreover, (d) If $(l(\alpha), \alpha_1, \alpha_2)$ and $(l(\beta), \alpha_1, \alpha_2)$ are two different clockwise cyclic triangles in Δ such that $l(\alpha)$ and $l(\beta)$ are not two sides of any triangle in Δ , then $T_{\alpha}T_{\alpha_1}T_{\alpha_2}T_{\alpha}T_{\alpha_1}T_{\alpha_2} = T_{\alpha_1}T_{\alpha_2}T_{\alpha}T_{\alpha_1}T_{\alpha_2}T_{\alpha}$,

$$T_{\alpha}T_{\alpha_1}T_{\alpha_2}T_{\beta}T_{\alpha_1}T_{\alpha_2} = T_{\alpha_1}T_{\alpha_2}T_{\alpha}T_{\alpha_1}T_{\alpha_2}T_{\alpha},$$

$$T_{\beta}T_{\alpha_1}T_{\alpha_2}T_{\beta}T_{\alpha_1}T_{\alpha_2} = T_{\alpha_1}T_{\alpha_2}T_{\beta}T_{\alpha_1}T_{\alpha_2}T_{\beta};$$

 $T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_n}T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_{n-2}}=T_{\alpha_2}T_{\alpha_3}\ldots T_{\alpha_n}T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_{n-1}}.$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Remark

- The groups satisfy relations (a)-(c), (e) appeared in terms of quiver with potential by Qiu, Qiu-Zhou, King-Qiu, etc;
- **2** The automorphisms T_{γ} is inspired by the symplectic transvection defined by Shapiro-Shapiro-Vainshtein-Zelevinsky.

Center of the braid groups Br_A, Br_D

Theorem[Berenstein-H-Retakh] Let (S, M) be an *n*-gon or a once-punctured *n*-gon and *T* be a triangulation of (S, M). Assume that \triangleleft is a linear order on *T* which is compatible with Q(T). Then $(\prod_{i\in T}^{\triangleleft} \tau_i)^c$ is the generator of the center of Br_T , where *c* is the Coxeter number.

Symmetries for surfaces

Example Rotation $2\pi/3$ gives an automorphism of the hexagon, it induces an automorphism of \mathbb{T}_T and an automorphism φ of Br_4 .

Then φ is inner and $\varphi(-) = \tau \cdot - \cdot \tau^{-1}$, where $\tau = T_1 T_2 T_3 T_1$ and $\tau^3 \in Z(Br_4) = \langle \tau^3 \rangle$.

Symmetries for surfaces

Example Rotation $2\pi/3$ gives an automorphism of the hexagon, it induces an automorphism φ of Br_{3k+1} . Denote $\tau_i = T_i T_{k+i} T_{2k+i}$ for $1 \le i \le k - 1$ and $\tau_k = T_k T_{2k} T_{3k} T_k$. Then φ is inner and $\varphi(-) = \tau \cdot - \cdot \tau^{-1}$, where $\tau = (\tau_1 \cdots \tau_{k-1} \tau_k)^k$ and $\tau^3 \in Z(Br_{3k+1}) = \langle \tau^3 \rangle.$

谢谢!

黄敏 (中山大学)

Noncommutative surfaces, clusters, and their

 ▲ ■ ▶ ■
 ● ○ ९ ○

 10-23, 2024
 33 / 33

< □ > < □ > < □ > < □ > < □ >