Noncommutative surfaces, clusters and their symmetries

黄敏

数学学院 (珠海)

joint with Arkady Berenstein and Vladimir Retakh

中山大学

代数表示论青年论坛

黄敏 (中山大学) Noncommutative surfaces, clusters, and their $10-23$, 2024 $1/33$

- ¹ Non-commutative cluster algebras–an informal introduction
- ² Non-commutative polygon
- ³ Non-commutative surfaces and their cluster structures
- ⁴ Braid group action and their symmetries

 Ω

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group Br_A together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid A^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \mathcal{D}_l of Br_A on G for any ι such that:

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group Br_A together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid A^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \triangleright_L of Br_A on G for any ι such that:

• The extensions $\iota : \mathbb{K}G \to \mathcal{A}$ are injective and their images generate \mathcal{A} (and A is a isomorphic to a noncommutative localization of $K\mathbb{C}$).

A (noncommutative) cluster structure on a graded \mathbb{K} -algebra \mathcal{A} consists of a certain graded group Br_A together with a collection of homogeneous embeddings ι of a given graded group G into the multiplicative monoid A^{\times} (these embeddings are referred to as noncommutative clusters) and a faithful homogeneous action \mathcal{D}_l of Br_A on G for any ι such that:

- The extensions $\iota : \mathbb{K}G \to \mathcal{A}$ are injective and their images generate \mathcal{A} (and A is a isomorphic to a noncommutative localization of $\mathbb{K}G$).
- (monomial mutation) For any ι and ι' we expect a (unique) automorphism $\mu_{\iota,\iota'}$ of G which intertwines between ι and ι' as well as between $Br_{\mathcal{A}}$ -actions \triangleright_{ι} and $\triangleright_{\iota'}$.

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• For any cluster homomorphism $f : A \rightarrow A'$ we expect a unique (up to conjugation) group homomorphism $f_*:G\to G'$ so that the induced homomorphism $Br^f_{\mathcal A}:=\{T\in Br_{\mathcal A}: T(Ker\ f_*)=Ker\ f_*\}\to Br_{\mathcal A'}$ is injective.

In many cases we expect a (noncommutative) Laurent Phenomenon:

Given a cluster $\iota: G \hookrightarrow \mathcal{A}^{\times}$, for any cluster $\iota': G \hookrightarrow \mathcal{A}^{\times}$ there is a submonoid $M_{\iota'} \subset G$ generating G such that $\iota'(M_{\iota'})$ is in the semiring $\mathbb{Z}_{\geq 0} \iota(G)$, moreover,

$$
\iota'(m)=\iota(\mu_{\iota,\iota'}(m))+\text{lower (upper) terms in }\iota(G)
$$

for any $m \in M_{\iota'}$.

Example: Ordinary and quantum cluster structures

The localization A of a (quantum) cluster algebra Λ , determined by an $m \times n$ exchange matrix \tilde{B} (and compatible $m \times m$ skew-symmetric matrix Λ), by the set X of all of its cluster variables satisfies all of the above requirements with $G \cong \mathbb{Z}^m$ (or its central extension G_q in quantum case) so that $\mathbb{Q}G=\mathbb{Q}[x_1^{\pm 1},\ldots,x_m^{\pm 1}]$ for a given cluster $\{x_1,\ldots,x_n\}$ in $\mathcal{A}.$ The well-known commutative/quantum Laurent Phenomenon asserts that the set of all (quantum) cluster variables belongs to the group algebra $\mathbb{Q}G$ which is an instance of its noncommutative counterpart stated above. In these cases, Br_A is essentially the group of symplectic transvections introduced by B. Shapiro, M. Shapiro, A. Vainshtein, A. Zelevinsky in 2000) and it is always a quotient of an appropriate Artin braid group.

 QQ

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \rightarrow & \left\langle \begin{array}{ccc} \square & \square & \end{array} \right\rangle \end{array} \right. \right. \right. \left. \pm \begin{array}{ccc} \searrow & \left\langle \begin{array}{ccc} \square & \rightarrow & \end{array} \right. \end{array} \right. \end{array}$

Non-commutative polygon

4日下

 \leftarrow \equiv \rightarrow

Non-commutative n -gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

4日下

 299

Non-commutative *n*-gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

 $[n] := \{1, 2, \cdots, n\};$

Non-commutative *n*-gon Σ_n

 Σ_n : disk with n marked points, labeled clockwise by $1, 2, \cdots, n$, on the boundary;

 $[n] := \{1, 2, \cdots, n\};$

Definition [Berenstein-Retakh]

The non-commutative n-gon $\mathcal{A}(\Sigma_n)$ is defined to be the non-commutative algebra generated by x_{ij} , $i \neq j \in [n]$, subject to

- (triangle relation) $x_{ij}x_{kj}^{-1}x_{ki}=x_{ik}x_{jk}^{-1}x_{ji}$ for any triangle $(i,j,k);$
- (Ptolemy relation) $x_{jl} = x_{ji}x_{ki}^{-1}x_{kl} + x_{jk}x_{ik}^{-1}x_{il}$ for any quadrilateral (i, j, k, l) on Σ_n .

 QQQ

 $\left\{ \bigoplus_{i=1}^n x_i \in \mathbb{R} \right| x_i \in \mathbb{R} \right\}$.

For any triangle (i,j,k) , define T_i^{jk} $x_j^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}.$ Call it the angle at i .

4 0 3

 Ω

For any triangle (i,j,k) , define T_i^{jk} $x_j^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}.$ Call it the angle at i .

(Triangle relations) $T^{jk}_i=T^{kj}_i$ i^{kj} for distinct i, j, k .

 $=$ Ω

For any triangle (i,j,k) , define T_i^{jk} $x_j^{jk} := x_{ji}^{-1} x_{jk} x_{ik}^{-1} = x_{ki}^{-1} x_{kj} x_{ij}^{-1}.$ Call it the angle at i .

(Triangle relations) $T^{jk}_i=T^{kj}_i$ i^{kj} for distinct i, j, k .

(Ptolemy relation) Angle is additive

$$
x_{ji}^{-1}x_{jl}x_{il}^{-1}=x_{ki}^{-1}x_{kl}x_{il}^{-1}+x_{ji}^{-1}x_{jk}x_{ik}^{-1},\quad \ T_{i}^{jl}=T_{i}^{jk}+T_{i}^{kl}.
$$

For any triangulation Δ of Σ_n , the total angle $T_i(\Delta)$ is defined to be

$$
\sum_{(i,j,k)} T_i^{jk},
$$

where (i, j, k) runs over all triangles incident to i in Δ .

For any triangulation Δ of Σ_n , the total angle $T_i(\Delta)$ is defined to be

$$
\sum_{(i,j,k)} T_i^{jk},
$$

where (i, j, k) runs over all triangles incident to i in Δ .

Proposition.

For any $i \in [n]$, the total angle $T_i(\Delta)$ does not depend on the triangulation, i.e., $T_i(\Delta) = x_{i-i}^{-1} x_{i-i} {+} x_{i+i}^{-1} = T_i^{i^-,i^+}$ $\frac{1}{i}$, $\frac{1}{i}$.

Theorem [Berenstein-Retakh]

For any triangulation Δ of the *n*-gon and for any distinct $i, j \in [1, n]$, we have

$$
x_{ij} = \sum_{\mathbf{i}=(i_1,\ldots,i_{2m})} x_{\mathbf{i}},
$$

where the summation is over all (ij) −admissible sequences i in Δ , i.e.,

 \leftarrow \Box

Theorem [Berenstein-Retakh]

For any triangulation Δ of the *n*-gon and for any distinct $i, j \in [1, n]$, we have

$$
x_{ij} = \sum_{\mathbf{i}=(i_1,\ldots,i_{2m})} x_{\mathbf{i}},
$$

where the summation is over all (ij) −admissible sequences i in Δ , i.e.,

•
$$
i_1 = i
$$
, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m - 1$;

€ □ E

 \leftarrow \leftarrow \leftarrow

 \rightarrow \equiv \rightarrow

Theorem [Berenstein-Retakh]

For any triangulation Δ of the *n*-gon and for any distinct $i, j \in [1, n]$, we have

$$
x_{ij} = \sum_{\mathbf{i}=(i_1,\ldots,i_{2m})} x_{\mathbf{i}},
$$

where the summation is over all (ij) −admissible sequences i in Δ , i.e.,

•
$$
i_1 = i
$$
, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m - 1$;

• an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;

€ □ E

 $\mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right) \rightarrow \mathcal{A} \left(\overline{\mathbf{H}} \right)$

Theorem [Berenstein-Retakh]

For any triangulation Δ of the *n*-gon and for any distinct $i, j \in [1, n]$, we have

$$
x_{ij} = \sum_{\mathbf{i}=(i_1,\ldots,i_{2m})} x_{\mathbf{i}},
$$

where the summation is over all (ij) −admissible sequences i in Δ , i.e.,

- $i_1 = i$, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m 1$;
- an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;
- If $\mathbf{p} := (i_k, i_{k+1}) \cap (i,j) \neq \emptyset$ and $\mathbf{q} := (i_\ell, i_{\ell+1}) \cap (ij) \neq \emptyset$ for some $k < \ell$, then the point p of (ij) is closer to i than q.

 QQ

Theorem [Berenstein-Retakh]

For any triangulation Δ of the *n*-gon and for any distinct $i, j \in [1, n]$, we have

$$
x_{ij} = \sum_{\mathbf{i}=(i_1,\ldots,i_{2m})} x_{\mathbf{i}},
$$

where the summation is over all (ij) −admissible sequences i in Δ , i.e.,

- $i_1 = i$, $i_{2m} = j$ and $(i_s, i_{s+1}) \in \Delta$ for $s = 1, ..., 2m 1$;
- an edge (i_s, i_{s+1}) intersects (i, j) iff s is even;
- If $\mathbf{p} := (i_k, i_{k+1}) \cap (i,j) \neq \emptyset$ and $\mathbf{q} := (i_\ell, i_{\ell+1}) \cap (ij) \neq \emptyset$ for some $k < \ell$, then the point p of (ij) is closer to i than q.

and
$$
x_1 := x_{i_1,i_2} x_{i_3,i_2}^{-1} x_{i_3,i_4} \cdots x_{i_{2m-1},i_{2m-2}}^{-1} x_{i_{2m-1},i_{2m}}
$$

 QQ

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ

Example

If
$$
n = 5
$$
 and $\Delta = \{(1,3), (3,1), (1,4), (4,1); (i, i \pm 1)|i \in [5]\}$, then

$$
x_{21}^{-1}x_{25}x_{15}^{-1} = x_{21}^{-1}x_{23}x_{13}^{-1} + x_{31}^{-1}x_{34}x_{14}^{-1} + x_{41}^{-1}x_{45}x_{15}^{-1}.
$$

 $x_{25} = x_{23}x_{13}^{-1}x_{15} + x_{21}x_{31}^{-1}x_{34}x_{14}^{-1}x_{15} + x_{21}x_{41}^{-1}x_{45}.$

 \leftarrow \Box

黄敏 (中山大学) Noncommutative surfaces, clusters, and their $10-23$, 2024 11 / 33

 Ω

For any triangulation Δ of Σ_n , the triangle group \mathbb{T}_Δ is defined to be $\mathbb{T}_{\Delta} = \langle t_{ij}, (ij) \in \Delta \rangle$ subject to

$$
t_{ij}t_{kj}^{-1}t_{ki} = t_{ik}t_{jk}^{-1}t_{ji}
$$

for i, $i, k \in [n]$.

Proposition

For any two triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}.$

For any triangulation Δ of Σ_n , the *triangle group* \mathbb{T}_Δ is defined to be $\mathbb{T}_{\Delta} = \langle t_{ij}, (ij) \in \Delta \rangle$ subject to

$$
t_{ij}t_{kj}^{-1}t_{ki} = t_{ik}t_{jk}^{-1}t_{ji}
$$

for i, $i, k \in [n]$.

Proposition

For any two triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}.$

We denote $\mathbb{T}_{\Sigma_n} = \mathbb{T}_{\Delta}$ and call it triangle group of Σ_n .

 Ω

 $\left\{ \bigoplus_{i=1}^n x_i \in \mathbb{R} \right| x_i \in \mathbb{R} \right\}$.

Fix a triangulation Δ of Σ_n , define $T_{ik} \in Aut(\mathbb{T}_{\Delta})$

$$
T_{ik}(t_{\gamma}) = \begin{cases} t_{ij}t_{kj}^{-1}t_{kl}t_{il}^{-1}t_{\gamma} & \text{if } \gamma = (ik) \\ t_{\gamma}t_{li}^{-1}t_{lk}t_{jk}^{-1}t_{ji} & \text{if } \gamma = (ki) \\ t_{\gamma} & \text{otherwise} \end{cases}
$$

for any internal edge (ik) of Δ where $(ijkl)$ is a cyclic quadrilateral containing (ik) as a diagonal.

 200

Triangle group and braid group action Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

4日下

∢ 何 ▶ - ∢ ∃

 QQQ

In

Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

Theorem

For any two triangulations Δ, Δ' of Σ_n , $Br_{\Delta} \cong Br_{\Delta'} \cong Br_{n-2}$.

Triangle group and braid group action Denote $Br_{\Delta} = \langle T_{ik}, (ik) \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

Theorem

For any two triangulations Δ, Δ' of Σ_n , $Br_{\Delta} \cong Br_{\Delta'} \cong Br_{n-2}$.

If Δ is a triangulation of the hexagon as in the picture

then $Br_{A6} = Br_4$ is generated by T_{13} , T_{15} , and T_{35} subject to $T_{13}T_{35}T_{13} = T_{35}T_{13}T_{35}$, $T_{35}T_{15}T_{35} = T_{15}T_{35}T_{15}$, $T_{35}T_{15}T_{35} = T_{15}T_{35}T_{15}$ and $T_{13}T_{15}T_{35}T_{13} = T_{15}T_{35}T_{13}T_{15} = T_{35}T_{13}T_{15}T_{35}$ $T_{13}T_{15}T_{35}T_{13} = T_{15}T_{35}T_{13}T_{15} = T_{35}T_{13}T_{15}T_{35}$ $T_{13}T_{15}T_{35}T_{13} = T_{15}T_{35}T_{13}T_{15} = T_{35}T_{13}T_{15}T_{35}$ ORO

Non-commutative marked surfaces and their cluster structure

 Ω

 $\Sigma = (S, M, U)$ marked orbifold, i.e.,

 S Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

 $\Sigma = (S, M, U)$ marked orbifold, i.e.,

 S Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U)$): oriented, connects two marked points,

 $\Sigma = (S, M, U)$ marked orbifold, i.e.,

 S Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U)$): oriented, connects two marked points,

 $\bar{\gamma}$ reverse the orientation of γ

 $\Sigma = (S, M, U)$ marked orbifold, i.e.,

 S Riemann Surface,

 $M \subset S$ marked points, $|M| < \infty$

 $U \subset S \setminus \partial S$ orbifold points, $|U| < \infty, M \cap U = \emptyset$

Curve (up to isotopy $S \setminus (M \cup U)$): oriented, connects two marked points,

 $\bar{\gamma}$ reverse the orientation of γ

 $\Gamma(\Sigma)$: set of curves in Σ

Definition [Berenstein-H-Retakh]

The non-commutative orbifold $A(\Sigma)$ is defined to be the non-commutative algebra generated by $x_{\gamma}, \gamma \in \Gamma(\Sigma)$, subject to (1) (triangle relation) $x_{\gamma_1}x_{\bar{\gamma}_2}^{-1}x_{\gamma_3}=x_{\bar{\gamma}_3}x_{\gamma_2}^{-1}x_{\bar{\gamma}_1}$ for any triangle $(\gamma_1,\gamma_2,\gamma_3)$ in Σ :

 (2) (Ptolemy relation) $x_{jl} = x_{ji}x_{ki}^{-1}x_{kl} + x_{jk}x_{ik}^{-1}x_{il}$ for any quadrilateral (i, j, k, l) in Σ ;

(3) (Monogon relations) $x_{\overline{\gamma}} = x_{\gamma}$ for each loop γ cuts out a monogon which contains only an orbifold point.

 Ω

Non-commutative orbifolds

Definition–continuous

(4) (Bigon orbifold relations)

 $x_{\alpha'}=x_{\bar\alpha_1}x_\alpha^{-1}x_{\alpha_1}+2\cos(\frac{\pi}{|p|})x_{\bar\alpha_1}x_\alpha^{-1}x_{\bar\alpha_2}+x_{\alpha_2}x_\alpha^{-1}x_{\bar\alpha_2}$ for any bigon (α_1, α_2) around an orbifold point p, where α is the loop around p such that $(\alpha_1,\alpha_2,\alpha)$ is a triangle and α' is the loop around p such that $(\alpha', \alpha_2, \alpha_1)$ is a triangle.

Non-commutative orbifolds

Definition–continuous

(4) (Bigon orbifold relations)

 $x_{\alpha'}=x_{\bar\alpha_1}x_\alpha^{-1}x_{\alpha_1}+2\cos(\frac{\pi}{|p|})x_{\bar\alpha_1}x_\alpha^{-1}x_{\bar\alpha_2}+x_{\alpha_2}x_\alpha^{-1}x_{\bar\alpha_2}$ for any bigon (α_1, α_2) around an orbifold point p, where α is the loop around p such that $(\alpha_1,\alpha_2,\alpha)$ is a triangle and α' is the loop around p such that $(\alpha', \alpha_2, \alpha_1)$ is a triangle.

$$
\bar{ } : \mathcal{A}_{\Sigma} \to \mathcal{A}_{\Sigma}, x_{\gamma} \mapsto x_{\bar{\gamma}} \text{ is an involution.}
$$

Remark

This is a non-commutative version of (generalized) cluster algebras from orbifolds.

Total angle

Let Δ be a triangulation of Σ .

• For any Δ and any cyclic triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ denote

$$
T_{\gamma_1,\gamma_2,\gamma_3}:=x_{\gamma_3}^{-1}x_{\overline{\gamma}_2}x_{\gamma_1}^{-1}=x_{\overline{\gamma}_1}^{-1}x_{\gamma_2}x_{\overline{\gamma}_3}^{-1}.
$$

• For any $i \in M$, denote

$$
T_i(\Delta) = \sum T_{(\gamma_1, \gamma_2, \gamma_3)} + \sum 2\cos(\frac{\pi}{|p|}) x_{\ell_p}^{-1},
$$

where the first summation is over all clockwise triangles $(\gamma_1, \gamma_2, \gamma_3)$ in Δ such that $s(\gamma_1)=i$ and $T_{(\gamma_1,\gamma_2,\gamma_3)}=x_{\overline{\gamma}_1}^{-1}x_{\gamma_2}x_{\overline{\gamma}_3}^{-1}$, the second summation is over all clockwise loops ℓ_p enclose an orbifold point p with $s(\ell_n) = i$.

Total angle

Proposition

Let Δ, Δ' be two triangulations of Σ . We have

$$
T_i(\Delta) = T_i(\Delta').
$$

We refer it as the total angle at i .

An equivalent presentation of A_{Σ} :

- Angle at a vertex of any triangle is well-defined.
- Angles at any marked point are additive.

 200

Noncommutative surfaces – Tagged cluster variables

 i puncture, γ is a curve with $t(\gamma)=i$, define $x_{\gamma^{(i)}}=x_{\gamma}T_{i}.$

Noncommutative surfaces – Tagged cluster variables

- i puncture, γ is a curve with $t(\gamma)=i$, define $x_{\gamma^{(i)}}=x_{\gamma}T_{i}.$
- *i*, *j* punctures, γ is a curve with $s(\gamma) = i$, $t(\gamma) = j$, define $x_{\gamma^{(i,j)}} = T_i x_{\gamma} T_j.$

Call them tagged (non-commutative) cluster variables.

 Ω

Noncommutative surfaces – Tagged cluster variables

- i puncture, γ is a curve with $t(\gamma)=i$, define $x_{\gamma^{(i)}}=x_{\gamma}T_{i}.$
- *i*, *j* punctures, γ is a curve with $s(\gamma) = i$, $t(\gamma) = j$, define $x_{\gamma^{(i,j)}} = T_i x_{\gamma} T_j.$

Call them tagged (non-commutative) cluster variables.

Theorem

For any puncture i the assignments $x_\gamma \mapsto T_i^{\delta_{i,s(\gamma)}}$ $\int_i^{\delta_{i,s(\gamma)}}x_\gamma T_i^{\delta_{i,t(\gamma)}}$ $i^{v_{i,t(\gamma)}}$ define an involutive automorphism φ_i of \mathcal{A}_{Σ} , where $s(\gamma)$ and $t(\gamma)$ are respectively the starting and terminating point of γ .

Moreover, these automorphisms commute so that for any subset P of punctures the composition φ_P of all φ_i , $i\in P$ is well-defined.

 QQ

◆ロト → 何ト → ヨト → ヨト

 Δ : ideal triangulation of Σ, the triangle group $\mathbb{T}_\Delta = \langle t_\gamma, \gamma \in \Delta \rangle$ subject to

$$
t_{\gamma_1} t_{\bar{\gamma}_2}^{-1} t_{\gamma_3} = t_{\bar{\gamma}_3} t_{\gamma_2}^{-1} t_{\bar{\gamma}_1}
$$

for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ .

 Δ : ideal triangulation of Σ, the triangle group $\mathbb{T}_\Delta = \langle t_\gamma, \gamma \in \Delta \rangle$ subject to

$$
t_{\gamma_1} t_{\bar{\gamma}_2}^{-1} t_{\gamma_3} = t_{\bar{\gamma}_3} t_{\gamma_2}^{-1} t_{\bar{\gamma}_1}
$$

for any triangle $(\gamma_1, \gamma_2, \gamma_3)$ in Δ .

 Δ tagged triangulation of Σ , the triangle group $\mathbb{T}_{\Delta} = \langle t_{\gamma}, \gamma \in \Delta \rangle$ subject to

$$
\bullet \ \ t_{\gamma_1}t_{\bar{\gamma}_2}^{-1}t_{\gamma_3}=t_{\bar{\gamma}_3}t_{\gamma_2}^{-1}t_{\bar{\gamma}_1} \text{ for any triangle } (\gamma_1,\gamma_2,\gamma_3) \text{ in } \Delta.
$$

 \bullet $t_{10}t_{01}$ tag t_{10} tag t_{01} ;

•
$$
t_{21}^+(t_{10}t_{01^{tag}})^{-1}t_{12}^- = t_{21}^-(t_{10}^{tag}t_{01})^{-1}t_{12}^+
$$
 for any once-punctured digon.

 Ω

イ押 トイヨ トイヨ トーヨ

Proposition

For any two tagged triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}.$

to the multime surfaces, clusters, and their symmetries 10-23, 2024 23 / 33

4 0 8

<母 > <目

目

 \rightarrow \rightarrow \rightarrow

 2990

Triangle groups

Proposition

For any two tagged triangulations Δ, Δ' of Σ_n , $\mathbb{T}_\Delta \cong \mathbb{T}_{\Delta'}.$

We denote $\mathbb{T}_{\Sigma} = \mathbb{T}_{\Delta}$ and call it *triangle group* of Σ .

 \leftarrow \Box

 299

 Δ : tagged triangulation of Σ , define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \to \mathcal{A}_{\Sigma}^{\times}, t_{\gamma} \mapsto x_{\gamma},$

 QQ

 \rightarrow 4 \equiv \rightarrow 4

 Δ : tagged triangulation of Σ , define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \to \mathcal{A}_{\Sigma}^{\times}, t_{\gamma} \mapsto x_{\gamma},$

Theorem (Noncommutative Laurent Phenomenon) The extension $\iota_{\Delta} : \mathbb{Q} \mathbb{T}_{\Delta} \to \mathcal{A}_{\Sigma}$ is injective for any tagged triangulation Δ of Σ and all x_{γ} (γ is a tagged curve) belong to its image. More precisely, each $x_γ$ can be uniquely expressed as a positive sum of elements of $\iota_{\Delta}(\mathbb{T}_{\Delta}).$

 Δ : tagged triangulation of Σ , define a natural embedding $\iota_{\Delta}: \mathbb{T}_{\Delta} \to \mathcal{A}_{\Sigma}^{\times}, t_{\gamma} \mapsto x_{\gamma},$

Theorem (Noncommutative Laurent Phenomenon) The extension $\iota_{\Delta} : \mathbb{Q} \mathbb{T}_{\Delta} \to \mathcal{A}_{\Sigma}$ is injective for any tagged triangulation Δ of Σ and all x_{γ} (γ is a tagged curve) belong to its image. More precisely, each $x_γ$ can be uniquely expressed as a positive sum of elements of $\iota_{\Delta}(\mathbb{T}_{\Delta}).$

In fact, the total angles T_i are in the image of all ι_Δ .

Fix an ideal triangulation Δ of Σ , if γ is not a self-folded arc, define $T_{\gamma} \in Aut(\mathbb{T}_{\Delta})$

$$
T_{\gamma}(t_{\alpha}) = \begin{cases} t_{ij}t_{kj}^{-1}t_{kl}t_{il}^{-1}t_{\gamma} & \text{if } \gamma = (ik) \\ t_{\gamma}t_{li}^{-1}t_{lk}t_{jk}^{-1}t_{ji} & \text{if } \gamma = (ki) \\ t_{\gamma} & \text{otherwise} \end{cases}
$$

for any internal edge (ik) of Δ where $(ijkl)$ is a cyclic quadrilateral containing (ik) as a diagonal.

つひひ

If $\gamma = (0, 1)$ is self-folded arc, define $T_{\gamma} \in Aut(\mathbb{T}_{\Delta})$

$$
T_{\gamma}(t_{\alpha}) = \begin{cases} t_{12}^{+}(t_{12}^{-})^{-1}t_{10} & \text{if } \gamma = (10) \\ \bar{T}_{\gamma}(10) & \text{if } \gamma = (01) \\ t_{12}^{+}(t_{12}^{-})^{-1}t_{11} & \text{if } \gamma = (11) \\ t_{\gamma} & \text{otherwise} \end{cases}
$$

€⊡

 Ω

Denote $Br_{\Delta} = \langle T_{\gamma}, \gamma \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).$

イロト イ何 トイヨト イヨト ニヨ

 ORO

Denote
$$
Br_{\Delta} = \langle T_{\gamma}, \gamma \in \Delta \rangle < Aut(\mathbb{T}_{\Delta}).
$$

Theorem

For any two triangulations Δ, Δ' of Σ , $Br_{\Delta} \cong Br_{\Delta'}$, moreover,

- (a) if α and β are not two sides of any triangle in Δ , then $T_{\alpha}T_{\beta}=T_{\beta}T_{\alpha}$;
- (b) If α and β are two sides of exactly one triangle in Δ , then $T_{\alpha}T_{\beta}T_{\alpha} = T_{\beta}T_{\alpha}T_{\beta};$
- (c) If (α_1, α_2) forms a once-punctured bigon with diagonals α_3 and α_4 . assume that $(\alpha_1, \alpha_3, \alpha_4)$ is a clockwise triangle in Δ and α_1, α_2 are not two sides of any triangle in Δ , then

 $T_{\alpha_1} T_{\alpha_4} T_{\alpha_2} T_{\alpha_3} T_{\alpha_1} T_{\alpha_4} = T_{\alpha_4} T_{\alpha_2} T_{\alpha_3} T_{\alpha_1} T_{\alpha_4} T_{\alpha_2}$;

 Ω

Continue

Theorem

For any two triangulations Δ, Δ' of Σ , $Br_{\Delta} \cong Br_{\Delta'}$, moreover, (d) If $(l(\alpha), \alpha_1, \alpha_2)$ and $(l(\beta), \alpha_1, \alpha_2)$ are two different clockwise cyclic triangles in Δ such that $l(\alpha)$ and $l(\beta)$ are not two sides of any triangle in Δ , then $T_{\alpha}T_{\alpha_1}T_{\alpha_2}T_{\alpha}T_{\alpha_1}T_{\alpha_2} = T_{\alpha_1}T_{\alpha_2}T_{\alpha}T_{\alpha_2}T_{\alpha_3}T_{\alpha_4}$

$$
T_{\beta}T_{\alpha_1}T_{\alpha_2}T_{\beta}T_{\alpha_1}T_{\alpha_2}=T_{\alpha_1}T_{\alpha_2}T_{\beta}T_{\alpha_1}T_{\alpha_2}T_{\beta};
$$

(e) If $\alpha_1, \alpha_2, \ldots, \alpha_n$ $(n \geq 2)$ are all the arcs incident to some puncture $p \in I_n$, assume that $\alpha_1, \alpha_2, \ldots, \alpha_n$ are in clockwise order and $\alpha_i \neq \alpha_j$ for any $i \neq j$, then $T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_n}T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_{n-2}}=T_{\alpha_2}T_{\alpha_3}\ldots T_{\alpha_n}T_{\alpha_1}T_{\alpha_2}\ldots T_{\alpha_{n-1}}.$

つへへ

Remark

- \bullet The groups satisfy relations (a)-(c), (e) appeared in terms of quiver with potential by Qiu, Qiu-Zhou, King-Qiu, etc;
- **2** The automorphisms T_{γ} is inspired by the symplectic transvection defined by Shapiro-Shapiro-Vainshtein-Zelevinsky.

つひひ

Center of the braid groups Br_A , Br_D

Theorem [Berenstein-H-Retakh] Let (S, M) be an n-gon or a once-punctured *n*-gon and T be a triangulation of (S, M) . Assume that \triangleleft is a linear order on T which is compatible with $Q(T)$. Then $(\prod_{i\in T}^{\lhd}\tau_i)^c$ is the generator of the center of Br_T , where c is the Coxeter number.

Symmetries for surfaces

Example Rotation $2\pi/3$ gives an automorphism of the hexagon, it induces an automorphism of \mathbb{T}_T and an automorphism φ of Br_4 .

Then φ is inner and $\varphi(-)=\tau\cdot-\cdot\tau^{-1}$, where $\tau=T_{1}T_{2}T_{3}T_{1}$ and $\tau^3 \in Z(Br_4) = \langle \tau^3 \rangle.$

 Ω

Symmetries for surfaces

Example Rotation $2\pi/3$ gives an automorphism of the hexagon, it induces an automorphism φ of ${Br}_{3k+1}.$ Denote $\tau_i = T_i T_{k+i} T_{2k+i}$ for $1 \leq i \leq k-1$ and $\tau_k = T_k T_{2k} T_{3k} T_k$. \mathcal{F} T_{k-1} \mathfrak{T}_k $T_{\mathbb{N}+1} \bigg/ \int^{T_{2k}}$ T_2 k -1 T_{3k} T_{3k-1} T_{2k+1} Then φ is inner and $\varphi(-)=\tau\cdot-\cdot\tau^{-1}$, where $\tau=(\tau_1\cdots\tau_{k-1}\tau_k)^k$ and $\tau^3 \in Z(Br_{3k+1}) = \langle \tau^3 \rangle.$

 200

谢谢!

tom The Moncommutative surfaces, clusters, and their symmetries 10-23, 2024 33 / 33

重

 2990

イロト イ部 トイモ トイモト